Discussion of Cepelewicz: "Where we see shapes AI sees textures"

For the AI in Medical Imaging and Signal Processing Journal Club

André Carrington PhD PEng CISSP

January 28, 2020

The Ottawa Hospital

L'Hôpital d'Ottawa

INSTITUT DE RECHERCHE

Context: classifying images with deep learning (DL)

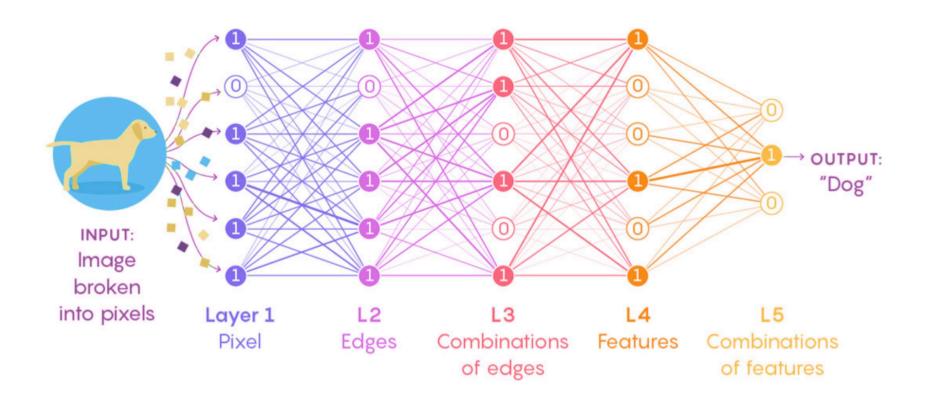


Figure adapted from Quantum Magazine

In reality, the features (information), formed at each layer is more mysterious...

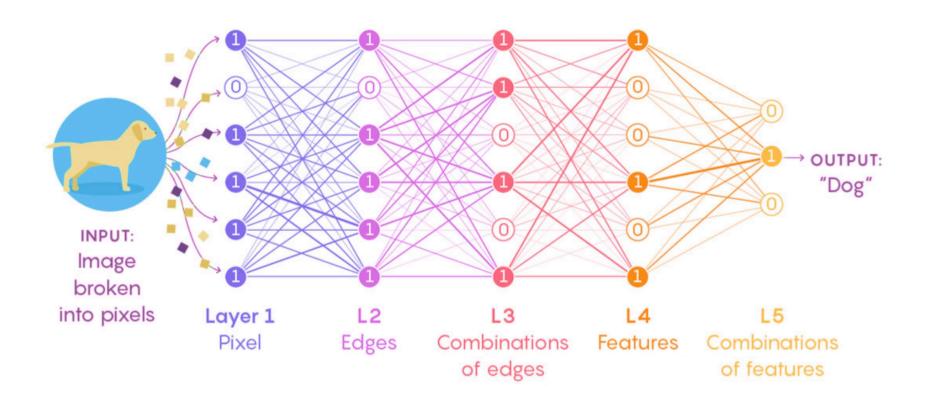


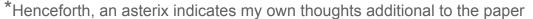
Figure adapted from Quantum Magazine

Central theme/claim

 "To researchers' surprise, deep learning vision algorithms often fail at classifying images because they mostly take cues from textures, not shapes."

Central theme/claim

- "To researchers' surprise, deep learning vision algorithms often fail at classifying images because they mostly take cues from textures, not shapes."
 - DL often succeeds (internal validation)*



Central theme/claim

- "To researchers' surprise, deep learning vision algorithms often fail at classifying images because they mostly take cues from textures, not shapes."
 - DL often succeeds (internal validation)*
 - But fails to generalize (ext. validation)*
 - other machines, environments, cases; adversarial inputs

Experiment: painting cats with elephant skin

- The classifier identified an elephant (by texture)
- Humans identified a cat (by shape)

Experiment: painting cats with elephant skin

- The classifier identified an elephant (by texture)
- Humans identified a cat (by shape)
 - This is an adversarial example which may not be realistic for all domains, e.g., surgery*

Experiment: painting cats with elephant skin

- The classifier identified an elephant (by texture)
- Humans identified a cat (by shape)
 - This is an adversarial example which may not be realistic for all domains, e.g., surgery*
 - Mimics, obstructions and noise are different. Obstructions confuse shape.*
 - i.e., which feature trumps? who is right?

This raises a bigger question*

- Do we want computers to:
 - Think like us?*
 - Or differently (to compliment our thinking)?*

This raises a bigger question*

- Do we want computers to:
 - Think like us?*
 - Or differently (to compliment our thinking)?*
 - It depends on the application/objective*
 - It can be useful or ideal to have votes (or probabilities of class membership) from:*
 - a shape classifier* and
 - a texture classifier*

Experiment: making DL use shapes

- Paint irrelevant textures (on objects, background)
- Performance improved
- But the classifier could still be fooled with trivial changes

Examples of how image classification can fail*

- A boat identified because of water
- A horse identified because of a shifted trademark
- A criminal identified because of whitespace
- Or in other ways which are not easily explained

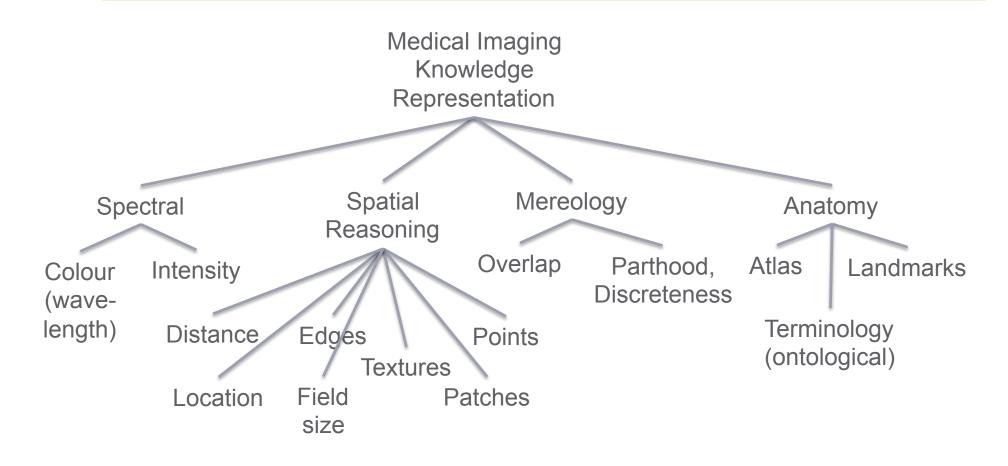
- Classifiers usually do not know which information is supposed to be relevant*
 - i.e., they lack prior knowledge (Bayesian priors)*

- Classifiers usually do not know which information is supposed to be relevant*
 - i.e., they lack prior knowledge (Bayesian priors)*
 - But parametric statistical methods do!*

- Classifiers usually do not know which information is supposed to be relevant*
 - i.e., they lack prior knowledge (Bayesian priors)*
 - But parametric statistical methods do!*
 - Manual feature engineering does!*
 - Knowledge bases do!*
 - Human-in-the-loop learning does!*

- Classifiers usually do not know which information is supposed to be relevant*
 - i.e., they lack prior knowledge (Bayesian priors)*
 - But parametric statistical methods do!*
 - Manual feature engineering does!*
 - Knowledge bases do!*
 - Human-in-the-loop learning does!*
 - DL automates feature engineering*

A quick draft of key concepts*



Markov kernels*

	-1	
-1	4.1	-1
	-1	

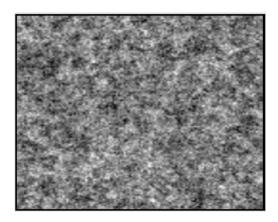
Membrane

	1	
2	-8	2
1 -8 (20.1	-8 1
2	-8	2
	1	

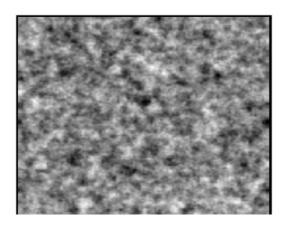
Thin-Plate

	-91	517	8	
58	1405	-5508	1164	85
-139	-2498	10000	-2498	-139
85	1164	-5508	1405	58
	8	517	-91	

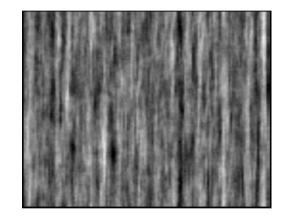
"Tree-Bark" [195]



1st order 3x3

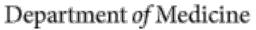


3rd order 5x5



4th order 5x5

L'Hôpital d'Ottawa INSTITUT DE RECHERCHE Figure adapted from Paul Fieguth's Statistical Image Processing and Multidimensional Modeling, p.190.



Questions?

André Carrington PhD PEng CISSP

