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Context: classifying images with deep learning (DL)
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In reality, the features (information), formed at
each layer is more mysterious...
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—

Central theme/claim

« “To researchers’ surprise, deep learning vision
algorithms often fail at classifying images because

they mostly take cues from textures, not shapes.”

The Ottawa | LHdpital .
" Hospital d’Ottawa Smn -
q RESEARCH INSTITUT DE .t '.}
INSTITUTE RECHERCHE DEP'&rtInent OfMedlee w4’ uOttawa



—

Central theme/claim

« “To researchers’ surprise, deep learning vision
algorithms often fail at classifying images because

they mostly take cues from textures, not shapes.”

DL often succeeds (internal validation)*
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—

Central theme/claim

« “To researchers’ surprise, deep learning vision
algorithms often fail at classifying images because

they mostly take cues from textures, not shapes.”

DL often succeeds (internal validation)*
« But fails to generalize (ext. validation)*

« other machines, environments, cases;
adversarial inputs
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Experiment: painting cats with elephant skin

* The classifier identified an elephant (by texture)

e Humans identified a cat (by shape)
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Experiment: painting cats with elephant skin

* The classifier identified an elephant (by texture)
e Humans identified a cat (by shape)

« Thisis an adversarial example which may not

be realistic for all domains, e.g., surgery*
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Experiment: painting cats with elephant skin

* The classifier identified an elephant (by texture)
* Humans identified a cat (by shape)

* Thisis an adversarial example which may not

be realistic for all domains, e.g., surgery*

«  Mimics, obstructions and noise are

different. Obstructions confuse shape.*

* i.e., which feature trumps? who is right?
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This raises a bigger question*

Do we want computers to:
* Think like us?*

« Or differently (to compliment our thinking)?*

The Ottawa | L'Hdpital

V.} Hospital d’Ottawa S =
RESEARCH INSTITUT DE .‘.5 :4

INSTITUTE RECHERCHE Department OfMediCine 4.7 uOnawa



—

This raises a bigger question*

Do we want computers to:
* Think like us?*
« Ordifferently (to compliment our thinking)?*

* It depends on the application/objective*

|t can be useful orideal to have votes (or
probabilities of class membership) from:*

* ashape classifier* and
* atexture classifier*
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Experiment: making DL use shapes

« Paintirrelevant textures (on objects, background)
* Performance improved

« Butthe classifier could still be fooled with trivial

changes
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Examples of how image classification can fail*

« A boatidentified because of water
A horse identified because of a shifted trademark
« A criminal identified because of whitespace

* Orin other ways which are not easily explained
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Bigger picture again*

« Classifiers usually do not know which information is

supposed to be relevant*

* i.e., they lack prior knowledge (Bayesian priors)*
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Bigger picture again*

« Classifiers usually do not know which information is

supposed to be relevant*
* i.e., they lack prior knowledge (Bayesian priors)*

« But parametric statistical methods do!*
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Bigger picture again*

« Classifiers usually do not know which information is

supposed to be relevant*
* i.e., they lack prior knowledge (Bayesian priors)*
* But parametric statistical methods do!*
* Manual feature engineering does!*
« Knowledge bases do!*
e Human-in-the-loop learning does!*

The Ottawa | L'Hdpital
S Hospital | d’Ottawa S

o o -
WSTIOE  ReoWERAE Department of Medicine  ~47  uwovawa



—

Bigger picture again*

« Classifiers usually do not know which information is

supposed to be relevant*
* i.e., they lack prior knowledge (Bayesian priors)*
* But parametric statistical methods do!*
* Manual feature engineering does!*
 Knowledge bases do!*
* Human-in-the-loop learning does!*

« DL automates feature engineering*
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A quick draft of key concepts*

Medical Imaging

Knowledge
Representation
Spectral Spatial Mereology Anatomy

/\ Reasoning T
Colour Intensity Overlap Parthood, Atl{mmarks

(wave- Discreteness

length) Distance Points Terminology
(ontological)

Textures
Location Field Patches
size
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Markov kernels*
1 91 517 8
1 -8 2 58 1405 -5508 1164 85
1GD)-1 1 8. 81 -139 -2498 (10000) -2498 -139
= 8 2 85 1164 5508 1405 58
1 8 517 -91
Viembrane Thin-Plate “Tree-Bark” [195]

1st order 3rd order 4th order
3x3 5x5 5x5
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