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Executive summary (simple) 
    To evaluate a classifier or binary diagnostic test: 

•  The area under the ROC curve (AUC) is standard but includes 
decision thresholds which are unrealistic, not clinically relevant. 

•  The partial AUC measures avg sensitivity without specificity, 
while the partial area index measures avg specificity without 
sensitivity. The standardized partial area is also flawed. 

•  We devise the (proper) concordant partial AUC and its equal, 
the (first) partial c statistici,ii for ROC as the only partial 
measures interpretable as a c statistic and with a clear relation 
to both avg. sensitivity and avg. specificity. 

i. except for survival regression, where Harrell’s C-index (sometimes 
   called a c statistic) differs from classification’s c statistic 
ii. existing partial c is a different concept and purpose30-33 
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Executive summary (technical) 
    To evaluate a classifier or binary diagnostic test: 

•  AUC is standard/recommended26,27,28, but flawed4,5,6,8,17,18,34. 
AUC equals the c statistic*, which provides interpretation. 

•  Partial AUC8,16 is better, e.g., focuses on a clinically relevant 
region, but biased to positives23 and flawed17,22.  sPA17 resolves 
that but has a flaw22,23 and shortcoming23, which we resolve. 
Alternatives9,17-21 lack AUC’s three key interpretations, until… 

•  We devise the (proper) concordant partial AUC23, and its equal, 
the partial c statistic for ROC23 (the first**) as generalizations of 
AUC and c 

* except for survival regression, where Harrell’s C-index (sometimes 
   called a c statistic) has continuous targets, fewer ties, and multiple  
   time-dependent ROC/AUC, different from classification’s c statistic 
** existing partial c is a different concept and purpose30-33 



Affiliated with  •  Affilié à 

Testing or predicting binary outcomes 

•  Strep throat 

•  Breast cancer remission within 1 year of treatment1 

•  Lung cancer tumor malignancy2 

•  Hospital readmission within 1 year3 
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Input Estimate 

Tests/classifiers estimate risk as a continuous 
value* 

Risk 
70% 

* Exceptions: k-NN, Decision trees, rule-based expert systems 
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Input Estimate 

50% 
Threshold 

Tests/classifiers estimate risk as a continuous 
value* and threshold it 

Risk 
70% 

Positive 

+ 
- 

* Exceptions: k-NN, Decision trees, rule-based expert systems 
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Input Estimate 

Risk 
  

More false 
Positives (FP) 

10% 
Threshold 

Lower thresholds cause more false positives 

+ 
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Input Estimate 

Risk 
  

More false 
Positives (FP) 

10% 
Threshold 

Threshold 
80% 

More false  
negatives (FN) 

- 

Higher thresholds cause more false negatives 
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We plot those three thresholds (t) together 

     . 
FN 

     . 
FP 
more 

more 

t = 50%

t = 10%

t = 80%

In a receiver operating 
characteristic (ROC) plot35-37. 
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We plot those three thresholds (t) together 

     . 
FN 

     . 
FP 
more 

more 

t = 50%

t = 10%

t = 80%

But a receiver operating 
characteristic (ROC) plot35-37 
is unlike any other 2D plot! 
 
Normally, a 2D plot takes 
coordinates (TPR,FPR) as 
input, but that is a SROC10! 
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We plot those three thresholds (t) together 

     . 
FN 

     . 
FP 
more 

more 

t = 50%

t = 10%

t = 80%

But a receiver operating 
characteristic (ROC) plot35-37 
is unlike any other 2D plot! 
 
Normally, a 2D plot takes 
coordinates (TPR,FPR) as 
input, but that is a SROC10! 
 
ROC plots take (score,label) 
inputs, following a procedure 
that sweeps a threshold across 
scores. 
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For our breast cancer remission example 

t = 50%

t = 10%

t = 80%
We may be considering a policy for persons 
at high risk of remission (e.g., t=70% or above) 
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What do we do with an ROC plot? 

t = 80%

t = 50%

t = 10%
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What do we do with an ROC plot? 

t = 80%

t = 50%

t = 10%
1.  Numerically 

report/compare 
performance 

2.  Pick a threshold 
to use 

  etc. 
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1.  We report or compare performance 

t = 80%

t = 50%

t = 10%
Using the area under 
the ROC curve (AUC)29. 
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•  ”Intrinsic accuracy” 

•  Average sensitivity over all 
thresholds and risk groups. 

•  Average specificity over all 
thresholds and risk groups. 

•  Concordance: % agreement  
of rank in scores {0.7,0.4} 
with labels {pos,neg}, for 
every possible pos/neg pair. 

1.  We report or compare performance 

Using the area under  
the ROC curve (AUC)29: 



Affiliated with  •  Affilié à 

t = 80%

t = 50%

t = 10%

But only some regions are 
relevant!4,5,6 

 
For low prevalence, the 
region of interest is at left7,8. 

1.  We report or compare performance 

Using the area under  
the ROC curve (AUC)29. 
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For high prevalence, the top 
is the region of interest7,9,10. 

So AUC has flaws4,5,6,8 

t = 80%

t = 50%

t = 10%

1.  We report or compare performance 

Using the area under  
the ROC curve (AUC)29. 

But only some regions are 
relevant!4,5,6 

 
For low prevalence, the 
region of interest is at left7,8. 
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2.  We can also pick a threshold to use 

t = 80%

t = 10%

Youden’s index11  
is typical. 

t = 80%

YI 
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But Youden’s 
Index assumes 
costFN = costFP ! 
and ignores  
prevalence! 

Usually 
costFN > costFP 
and data imbalanced 

Youden’s index11  
is typical. 

2.  We can also pick a threshold to use 

t = 80%

t = 10%

t = 80%

YI 
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Use Metz’s formula7,12 
or a (fully) generalized 
Youden’s index13,14,15. 

But using correct 
formulas with default  
equal costs is still  
wrong! 

Youden’s index11  
is typical. 

2.  We can also pick a threshold to use 

t = 80%

t = 10%

t = 80%

Metz 
or GYI 
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t = 80%

t = 10%

t = 80%

But using correct 
formulas with default  
equal costs is still  
wrong! 

2.  We can also pick a threshold to use 

Use Metz’s formula7,12 
or a (fully) generalized 
Youden’s index13,14,15. 

Youden’s index11  
is typical. 

Metz 
or GYI 

We don’t know costs 
precisely! 

Others won’t agree!
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t = 80%

t = 80%

But using correct 
formulas with default  
equal costs is still  
wrong! 

2.  We can also pick a threshold to use 

Use Metz’s formula7,12 
or a (fully) generalized 
Youden’s index13,14,15. 

Youden’s index11  
is typical. 

Metz 
or GYI 

We don’t know costs 
precisely! 

Others won’t agree!

Justified assumptions 
are better than unjustified 

 assumptions. 
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How do we fix those problems and concerns? 

Instead of assuming one 
cost (risk) for all patients 
 

Or assuming all possible choices 
of cost (risk) are relevant 
 

We need  
something 
in between! 

 
t = 80%

t = 10%

t = 80%
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Partial AUC8,16 (pAUC) in between is better! 

pAUC

Focuses on a clinically 
relevant region (not a  
single point). 
 
Allows choice of costs  
(risk) or uncertainty of  
costs in a region: 
-  specific to a patient 
-  specific to a doctor 
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Partial AUC8,16 (pAUC) 

But partial AUC is 
flawed21-23: 

-  Biased to positives 
     (the vertical axis)  

-  not interpretable as a 
     c statistic 

-  increases monotonically 
     with FPR 

pAUC
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The bias of pAUC on the vertical (positives) is 
like a magnifying glass that distorts 
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sPA17 fixes some problems 
with the partial AUC: 

-  Avoids positive only 
     (vertical) focus*  

-  not interpretable as a 
     c statistic23 

-  Fixes monotonic 
increase with FPR 

-  fails for improper ROC 
curves21,23 

The standardized partial area17 (sPA) is better 
but has one flaw21,23 and one shortcoming23 

sPA
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Other partial area measures9,18-21 also fall 
short. 

Of existing alternatives: 
PAI9, PAIm17, sPA17, half-
AUC18, two-way AUC19, 
novel PAI20 and tighter 
sPA21, none can be 
interpreted as a c statistic. 
None are proper analogies 
to AUC and c. 
 
Some also have fixed 
bounds or only address 
specific questions. 

sPA
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A partial measure analog to AUC must recognize its 
horizontal, vertical and c statistic interpretations23 

t = 80%

t = 50%

t = 10%

Average TNR 

Average TPR 

AUC = average TPR29 

         = average TNR29 

         = c statistic29 
 
AUC computation only 
uses average TPR since 
it is redundant for the 
whole curve, but not a 
partial curve!23 
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We propose a concordant partial AUC23, pAUCc
 

pAUCc 

In a partial curve 
the horizontal and 
vertical areas are not 
the same. 
 
Our measure has all 
three interpretations: 
horizontal, vertical and 
c statistic as a proper 
analogy to AUC. 
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It equals a proposed partial c statistic23 cΔ for 
ROC data 

First concordance 
interpretation for a 
partial ROC curve. 
 
The meanings of the 
axes and instances 
(patients) along them 
are important for 
interpretation. 
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We also need (and propose) a horizontal 
partial AUC23, pAUCx, with free bounds 

The partial area index9 

has one boundary 
fixed at TPR=1.0 

pAUCx As part of measuring 
pAUCc we need a 
horizontal partial AUC 
with free bounds per 
Walter’s suggestion10. 
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Before our work 

Measure 
Type Positives  Negatives Positives and 

Negatives 

Point True positive rate 
(Sensitivity) 

True negative rate 
(Specificity) Accuracy 

Whole Area, 
c statistic AUC = Avg TPR AUC = Avg TNR AUC = c 

Partial 
Area 

Partial AUC = 
Local Avg TPR 

Partial Area   
Index Partial AUC 

Partial 
c statistic 

Placement values 
(positive) 

Placement values 
(negative) ? 

Existing partial 
c is for other 
purposes30-33 

* 

*PAI9 requires a fixed right 
  boundary of FPR=1 
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After our work23 

Measure 
Type Positives  Negatives Positives and 

Negatives 

Point True positive rate 
(Sensitivity) 

True negative rate 
(Specificity) Accuracy 

Whole Area, 
c statistic AUC = Avg TPR AUC = Avg TNR AUC = c 

Partial 
Area 

Partial AUC = 
Local Avg TPR 

Horizontal    
Partial AUC 

Concordant 
Partial AUC 

Partial 
c statistic 

Placement values 
(positive) 

Placement values 
(negative) 

Partial c 
for ROC 

*Both boundaries for the 
  partial area are free. 

* 
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This matters because… 

Positives and 
Negatives 

Accuracy 

AUC = c 

Concordant 
Partial AUC 

Partial c 
for ROC 

Unbiased 
measure 

Data may have implicit 
bias or cause bias, and we 
can compensate for that, 
but measures should not 
have bias unless paired  
and clearly understood as 
positive/negative  
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We tested our measures with data 

•  Ljubljana breast cancer data (remission at 1 year) 

•  Wisconsin breast cancer data 

•  Classic ROC example data from Fawcett 

•  Classic ROC example modified for imbalance 

Differences in AUC are minimal when AUC ≈ 97%
(Wisconsin)---Ljubljana provides better examples.
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Results 

•  We validated the theory of our measures on all 4 data sets.  
Results for three partial curves add up to the whole. 

•  Σ pAUCc = AUC 
•  Σ cΔ      = AUC 
•  pAUCc      = cΔ 
•  pAUCc      = cΔ 

•  We also interpreted our measures in comparison to other 
measures (next). 
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In Ljubljana results the NN* and SVM* ROC curves 
cross twice in the first partial curve FPR=[0,0.33] 

SVM 

NN 
SVM ends higher 

SVM  
rises 

faster 

*NN=neural network and SVM=support vector machine 
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SVM 

NN 
SVM ends higher 

SVM  
rises 

faster 
pAUCc: SVM  
contributes  
more to AUC 
 
pAUC says 
otherwise: biased toward the vertical (positives) 

in the vertical & horizontal, positives & negatives. 

In Ljubljana results the NN* and SVM* ROC curves 
cross twice in the first partial curve FPR=[0,0.33] 

*NN=neural network and SVM=support vector machine 
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 pAUCc = cΔ= 48.0% 
 
pAUC 
=21.6% 

 pAUCc = cΔ= 49.5% 
 
pAUC 
=21.3% 

Another view of that 
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In the first partial curve pAUCc ~ AUPRC+ 

*LDA=linear discriminant analysis, LogR=logistic regression 

* * 
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Summary 

Ø  Our measures23: 

Ø  are generalizations of AUC and c 

Ø  have no bias re positives vs negatives (people) 

Ø  improve interpretation & measures of partial curves 

Ø  Improve understanding of AUC and c equivalence 

Toward equitable, explainable and optimal AI 
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Future work 

Ø  A short paper with more clinical examples 

Ø  Use of the measure in a research study 

Ø  Studying, benchmarking decision-making thresholds 
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Data are often imbalanced 

Imbalanced classes:  #positives  ≠  #negatives 

1:3                        Breast cancer1   
5:100         Hepatitis B24 
2:10 000   Melanoma25, fraud 
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Sensitivity 
 

Specificity without

Ignoring negatives is like considering 
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Sensitivity 
 
Positive predictive 
value (PPV) 

Specificity 
 
Negative predictive 
value (NPV) 

without

“

Ignoring negatives is like considering 
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Sensitivity 
 
Positive predictive 
value (PPV) 
 
Likelihood ratio 
positive (LR+) 

Specificity 
 
Negative predictive 
value (NPV) 
 
Likelihood ratio 
negative (LR−) 

without

“

“

Ignoring negatives is like considering 
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Sensitivity 
 
Positive predictive 
value (PPV) 
 
Likelihood ratio 
positive (LR+) 
 
Average precision 
(AP = AUPRC+) 

Specificity 
 
Negative predictive 
value (NPV) 
 
Likelihood ratio 
negative (LR−) 
 

 
AUPRC− 

without

“

“

“

Which we cannot do in medicine 

Ignoring negatives is like considering 


