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+ robotics (control theory) 
+ expert systems 
+ bus. intelligence 
+ operations research 
   (game theory) 



Which medical tasks can use AI?
§  screening (for a single disease) 
§  prognosis (re cancer remission) 
§  … 
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AI in medicine
§  Detection 
§  Anomaly detection 
§  Prognosis 
§  Association (with features) 
§  Similarity search 
§  Influence (of cases) 
§  …a subset of my list of examples 
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AI in medical imaging
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§  Image segmentation 
§  Image registration 

§  Image denoising 

§  Image inpainting 

§  Surface reconstruction 

§  Image atlas creation 

§  Genetic sequence alignment 

§  Protein sequencing 

§  Factor analysis 

§  Dimension reduction 



AI in medicine
§  Detection: Do I have chronic kidney disease? (a specific disease)                           

          Which parts of an image indicate malignancy? 
§  Anomaly detection: Is there an unusual pattern of symptoms in the city? 
§  Prognosis: How long will I live with stage 4 lung cancer? Will I survive to year 5? 
§  Association (with features): Which predictors matter? 
§  Similarity search: Which cases are similar? 
§  Influence (of cases): Which cases influence the prediction most? 
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AI in medicine
§  Detection: Do I have chronic kidney disease? (a specific disease)                           

          Which parts of an image indicate malignancy? 
§  Anomaly detection: Is there an unusual pattern of symptoms in the city? 
§  Prognosis: How long will I live with stage 4 lung cancer? Will I survive to year 5? 
§  Association (with features): Which predictors matter? 
§  Similarity search: Which cases are similar? 
§  Influence (of cases): Which cases influence the prediction most? 
§  Subgroup identification: What are the subgroups/clusters in data? 
§  Modelling: What is the best model of organ function? 

§  Scheduling/planning: What is the best schedule/plan for resource use? wait times? 

§  Treatment: Which therapy is best for me? (precision med; single/next step) 
§  Simulation: What is the best care pathway? multiple dose / longitudinal response? 

§  Diagnosis*: I do not feel well, what is the problem? What tests should be ordered?         
               (possibly any disease) 
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AI in medical imaging
§  Image segmentation: finding borders or cell counting 

§  Image registration: aligning scans from different modalities 

§  Image denoising: removing noise 

§  Image inpainting: estimating an obstructed view 

§  Surface reconstruction: estimating a 3D surface from 2D images 
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AI in medicine
§  Image segmentation: finding borders or cell counting 

§  Image registration: aligning scans from different modalities 

§  Image denoising: removing noise 

§  Image inpainting: estimating an obstructed view 

§  Surface reconstruction: estimating a 3D surface from 2D images 

§  Image atlas creation: creating an average/representative image/map, e.g., brain 

§  Genetic sequence alignment: align gene sequences for comparison 

§  Protein sequencing: identify the sequence of proteins 

§  Factor analysis: transforming data into independent factors 

§  Dimension reduction: reducing data into less factors  
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For those tasks what are the 
objectives of doctors?

§  … 
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For those tasks what are the 
measurable objectives of doctors?
§  cost-benefit 
§  discrimination 
§  calibration (or goodness of fit) 
§  probability of error for individual predictions 
§  parsimony 
§  interpretability 
§  understanding why (not how) it predicts outcome y for pt X 
§  understanding how they work & how they fail 
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Prediction: why (not how)
§  Why was outcome y predicted for patient X? 

§  feature A ? 
§  patient Y ? 
§  priors in data ? 
§  model ? (a kind of prior) 

 
§  To augment our thinking, explain to others, increase use 
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Supervised learning
§  Imitating input/outcome patterns in data, with 

binary or continuous outcomes as ground truth. 
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Unsupervised learning
§  Organizing or transforming structure in data 

without ground truth. 
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Reinforcement learning
§ Navigating or planning a sequence of 

actions to maximize a reward/objective 
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Generative models
§  Can generate the inputs. Can generate outputs 

that seem realistic, e.g., natural speech synthesis. 
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Machine 
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What needs explanation?

Performance 

Training 
algorithm 

metaphor: grocery 
 cashier supervisor 

metaphor: grocery  
cashier trainee 
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To whom do we explain?

Performance 

Training 
algorithm 

patient 

doctors analysts 



Explainable AI
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https://www.newyorker.com/cartoon/a19697 



Why we need explainable AI
§  To understand why a machine detects, recommends or 

predicts to effectively augment human decision-making 
§  To foster trust and use by doctors and patients 
§  For fairness, accountability and transparency in life decisions 
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§  To understand why a machine detects, recommends or 
predicts to effectively augment human decision-making 

§  To foster trust and use by doctors and patients 
§  For fairness, accountability and transparency in life decisions 
§  To meet by EU law and general ethics 
§  To avoid law suits and maintain goodwill 
§  To understand how to improve accuracy/fit in subgroups 
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Why we need explainable AI



§  gof = calibration 
§  Poor fit (accuracy) for subgroups with few samples 

§  Race    – melanoma rare for dark-skin 
§  Pregnant women   – clinical trial exclusion 
§  Children    – clinical trial exclusion 
§  Elderly    – clinical trial exclusion 
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Fairness: goodness of fit, #samples
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Illustrating the previous point, how 
can I estimate the last row outcome?

? 
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Model interpretability ≈ XAI
Lipton (2016) describes two categories:  
(different in timing/step and approach) 
1.  Transparency 
2.  Post-hoc interpretability, i.e., explanations 
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Model interpretability, XAI 1 
1. Transparency – Lipton (2016) describes 3 parts 

a)  Decomposability  know influence of parts in data & model 
b) Simulatability                 mentally simulate & compute 
c)  Algorithmic transparency   know loss function behaviour 
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Model interpretability, XAI 2 
1. Transparency – Lipton (2016) describes 3 parts 

a)  Decomposability 
b) Simulatability 
c)  Algorithmic transparency 
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2. Post hoc interpretability – Lipton (2016) describes 3 parts  
a)  Natural language explanation rules, top words 
b) Visualization             saliency maps 
c)  Explanation by example         similar case, class prototype 



XAI for text and imaging
§  Text: features are transparent, e.g., topics, bag of words, n-

grams, words 

§  Imaging: saliency maps are sometimes intuitive explanations  

§  Imaging: highly-engineered features (e.g., PCA) are 
sometimes intuitive, e.g.: 

§  lips smiling, e.g. MVU* (Weinberger et al., 2006) 
§  angle of face, e.g. LLE** (Ghodsi, 2006) 
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* maximum variance unfolding (MVU) 
** local linear embedding (LLE) 



XAI for numeric data
§  Combinations of independent numeric features are usually 

not intuitive

    3*height + diastolic blood pressure + 0.5*weight 

§  What does that mean? Is that clinically valid? 

§  Suppose it is risk. What kind of risk?  Different from others? 

§  Concerns with physician numeracy (Estrada et al., 1999; 
Hanoch et al., 2010) and patient numeracy 
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The need for transparent features
§  To interpret output in one step or “inline” 
§  Holistic vs. piece-wise understanding. 
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       Machine Output Transparent 
features 

       Machine Output Transparent 
features 

Complex 
transform,PCA 

vs. 

Opaque 
features 

Your diagnosis is X because 
you are similar to patient A
in transparent feature p

Your diagnosis is X because 
you are similar to patient A
in opaque features q & r
most influenced by transparent feature p



Transparent features defined
Carrington (2018) defines transparent features for independent 
Reals as transformations of originals we can mentally simulate                  
in a set that avoids collinearity 
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Transparent 

shift, scale, flip, magnitude (abs) 

invert (1/x), square,  
order of magnitude (log x) 
 
squash (tanh), bin, top-code, 
bottom-code 

Not Transparent 

shear, rotate 

PCA, ICA, FA, MDS, t-SNE, 
ISOMAP, KPCA etc. 
 
random projections 



A false dichotomy
Lipton (2017) discusses two options: 

§  Linear models with highly-engineered features vs. 
§  Deep models with transparent* features 

and trade-offs between them. 
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*Lipton refers to “raw or lightly processed” features 



There are more options
Lou, Caruana et al. (2012) categorize models as: 

1.  Linear          most intelligible 
2.  Generalized linear models, GLM 
3.  Additive 
4.  Generalized additive models, GAM 
5.  Full complexity (deep)       least intelligible 
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Examples
2. Generalized linear models, GLM 

§  Logistic regression 
§  Piecewise linear models or splines, MARS (Friedman, 1991) 

4. Generalized additive models, GAM (Hastie & Tibshirani, 1990) 
§  Fractional polynomial regression (Royston & Altman, 1994) 
§  Transparent kernels+support vector machines (Carrington, 2018) 

§  which can be used in deep kernel learning (Wilson, 2014) 
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Explainable models (assumption)
Explainable: 

§  Decision trees, rules 
§  Bayesian networks 
§  Logistic regression 
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False positives in model assumptions
Explainable: 

§  Decision trees, rules 
§  Bayesian networks 
§  Logistic regression 
§  except for (Lipton, 2016; Carrington, 2018) 

§  too many features, nodes, levels 
§  collinear features 
§  opaque features 
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False negatives in model assumptions
Explainable: 

§  Decision trees, rules 
§  Bayesian networks 
§  Logistic regression 
§  Support vector machines (Barbella et al., 2016; Poulin et 

al., 2006; Carrington, 2018) 
§  Neural networks (Montavon et al., 2017) 
§  Random forests (Breiman, 2001) 
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Be wary of the trade-off assumption
§  Assumed trade-off: 

 Accuracy vs. interpretability (or explainability) 
§  For some problems, big data trump models (Banko & Brill, 

2001) and simple models trump complex ones (Halevy, 
Norvig & Pereira, 2009). 

§  Logistic regression outperforms random forests in prediction 
of CVD mortality & heart failure type (Austin, 2012 & 2013). 

§  Explainable/finite kernels in SVM* outperform the infinite 
Gaussian RBF kernel on four heterogeneous clinical data 
sets without images or text (Carrington, 2014). 
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*support vector machines 



If the accurate/explainable trade-off  
were true, then…
1. Plots of accuracy versus explainability (# support vectors) 

would show a negative sloped trend: linear or exponential 
2. More explainable (finite) kernels, e.g., Mercer sigmoid, 

would achieve less accuracy than the infinite Gaussian RBF 
§  Neither of these phenomena show in the following plots 

(Carrington, 2018). 
§  The relation between accuracy, kernel width and SVM box 

constraint is more complicated (Ben-Hur et al., 2010). 
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Accuracy vs interpretability (SV): Hep
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Accuracy vs interpretability (SV): Heart
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Accuracy vs interpretability (SV): Liver 
(classically incorrect nonclinical target)



Accuracy vs interpretability (SV): Liver 
(rarely used correct clinical target)
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plot for 
selected 
patient 
(green) 

most 
influential 
instances 
(blue)  

no class 
boundary 

no  
counter- 
factuals 
(red) 

Explaining SVM results (Barbella et al., 
2009)



Dr. André Carrington. Copyright 2019. PAGE  50 

gradients 
show 
influence 
toward 
classes 

class 
boundaries 
(dotted line) 

includes 
counter- 
factuals 

includes  
data 
limits 

An improved view (Carrington, 2018)



Explanations (Miller, 2017)
§  In social science, explanations are: 

§  Contrastive – why A and not B? 
§  Selected (vs. complete) 
§  Causal (vs. probabilistic) 
§  Social – involving the beliefs of explainer & explainee 
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