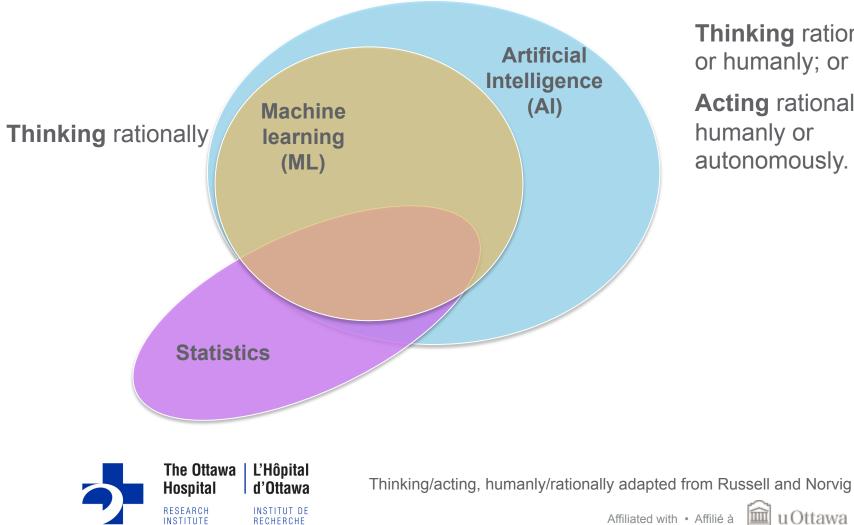
The way of AI: paths, pitfalls & tools in surgery, medicine and health care

André Carrington PhD PEng

December 5, 2019

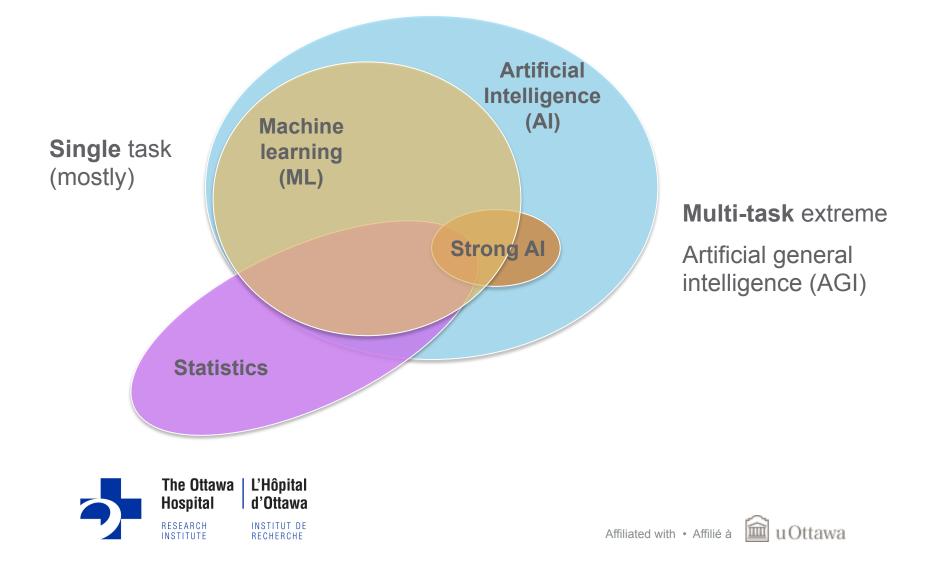
The Ottawa | L'Hôpital Hospital d'Ottawa

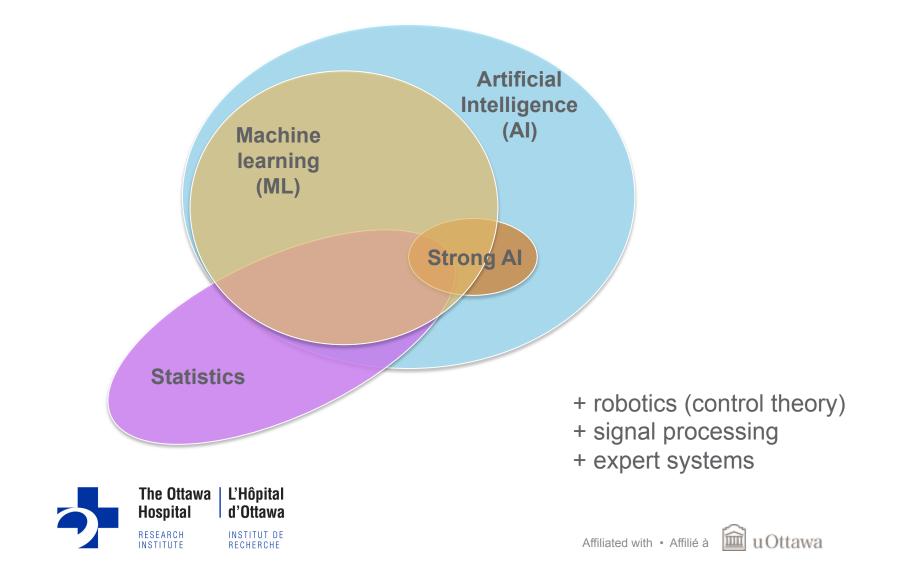
RESEARCH


INSTITUTE

INSTITUT DE RECHERCHE

Affiliated with • Affilié à


Statistics, ML and Al

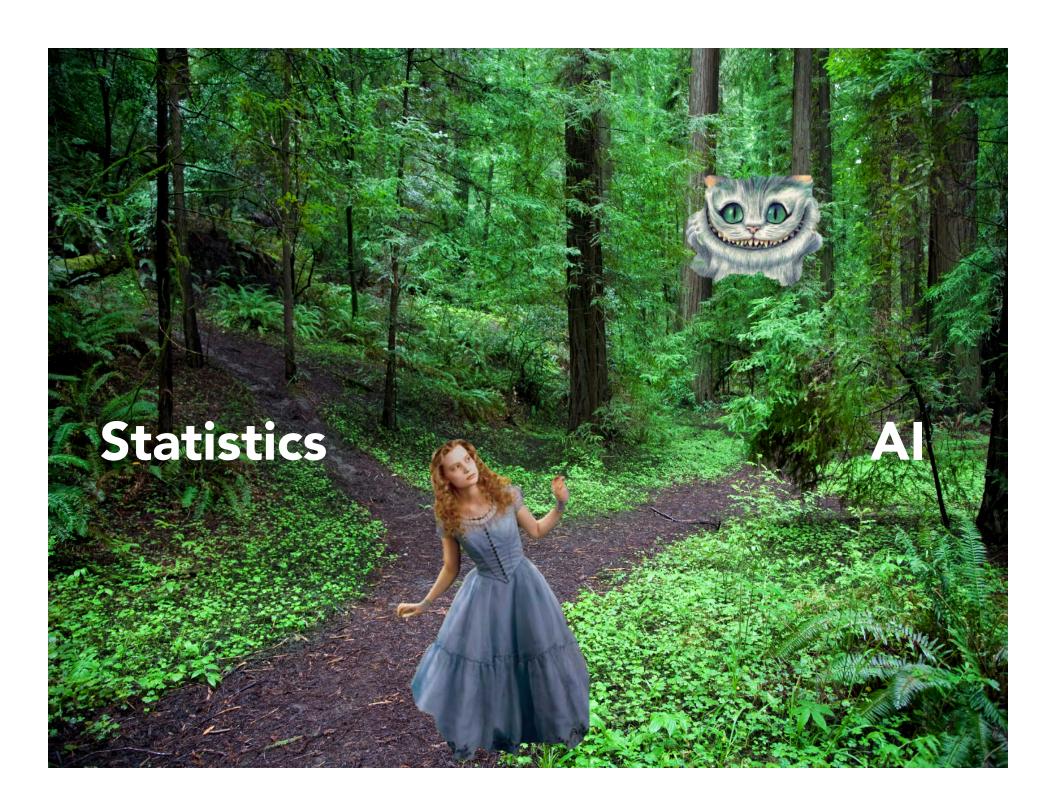

Thinking rationally or humanly; or Acting rationally or humanly or autonomously.

🟛 uOttawa Affiliated with · Affilié à

Statistics, ML and Al

Statistics, ML and Al

Other overlapping concepts/terms


- Deep learning
- Data science
- Data mining
- Analytics
- Clinical decision support systems
- Image processing
- Computer vision

- Computer aided detection (CAD) or diagnosis (CADx)
- Business intelligence
- Statistical learning
- Pattern recognition
- Operations research
- Knowledge based systems

One day Alice came to a fork in the road

Statistics

Statistics

Alice: to paradise for analysts.

Alice: to paradise for analysts. do both paths go there?

Alice: to paradise for analysts. do both paths go there? how do they differ?

What is paradise (for a task)?

- Automation
- Discrimination
- Calibration + calibrated scores
- Statistical validity

What is paradise (for a task)?

- Automation
- Discrimination
- Calibration + calibrated scores
- Statistical validity
- Transparency
- Explainability + causal insight = causability
- Usable/available tool
- > Clinical utility

YES, for some tasks

- Classification
- Regression
- Dimension reduction
- Time series

- Clustering
- Anomaly detection
- Sequential decisionmaking

YES, for some tasks

- Classification
- Regression
- Dimension reduction
- Time series

- Clustering
- Anomaly detection
- Sequential decisionmaking

MAYBE? Survival analysis

Stats and machine learning can use

• Numeric, binary, categorical, ordinal, censored, ratios

Age	Sex	Race	Cancer stage	Prognosis		
25	М	Black	II	4		

• Numeric waveforms, spectra, ICD-10-CA, HL7

Affiliated with \cdot Affilié à $\widehat{\mathbf{m}}$ uOttawa

Machine learning can use

- 2D/3D images <u>as-is</u> (no extraction)
- genomic sequences
- natural language (freetext)
- robotic path planning
- graphs or networks
- speech recognition

Statistics avoids:

- Image processing*
- Biologic sequence analysis
- Natural language processing
- Speech recognition
- Speech generation
- Graph theory
- Game theory

*largely

Statistics avoids:

- Image processing*
- Biologic sequence analysis
- Natural language pro
- Speech recognition
- Speech generation
- Graph theory
- Game theory

*largely

Al avoids:

- Imputation
- De-identification
- Kernel density est.
- Descriptive statistics
- Performance measures

Statistics:

- Needs more analysis of data/model
- More health focus
- Needs less data

AI:

- Better than stats for very complex problems
- More mindshare
- Needs more data

Statistics:

- Needs more analysis of data/model
- More health focus
- Needs less data (model driven) global model
- Usually easier to explain, inspect

AI:

- Better than stats for very complex problems
- More mindshare
- Needs more data (data driven) local model
- More effort, expertise to explain, inspect

Data in biostatistics

- Structured data
- Big or small data
- Thin (few features, many samples), not wide
- Static or longitudinal
- Feature collinearity avoided
- Feature parsimony sought

Data in machine learning

- Structured or unstructured data
- Big or small data
- Thin and wide
- Static, longitudinal, or online as an incoming stream
- Feature collinearity **okay / better tolerated**
- Feature parsimony **not needed: thousands allowed**
- Calibration (goodness-of-fit) often neglected

Learning in biostatistics

- Maximizes likelihood
- Calibration (goodness-of-fit) important
- Converted to a single data type
- A few mixed data methods
- Can explicitly include noise & error variables (uncertainty)
- Exceptions: LASSO, Ridge

Learning in machine learning

- Maximizes posterior probability and may
 - Maximize margin
 - Control complexity with sparsity & shrinkage
- Goodness of fit and p-values often ignored
- A few more mixed data methods
- Sometimes bio-inspired

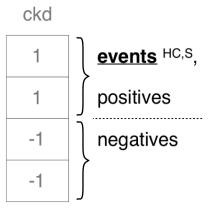
Hidder slide

Pitfalls and challenges

- Collaboration assumptions: e.g., terms, methods
- Non-bias/cost assumptions: e.g., AUC relevance
- Data assumptions: e.g., PCA linear
- Expert cameras and bake-offs: e.g., linear SVM
- Being unFAIR: e.g., re-usable open science

Collaborating challenge: overlapping terms

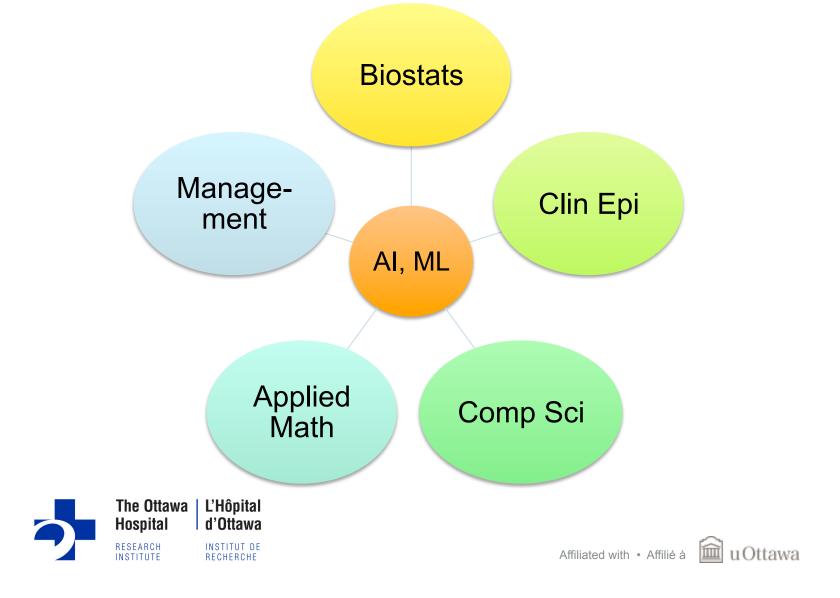
features ML, covariates S, attributes S,

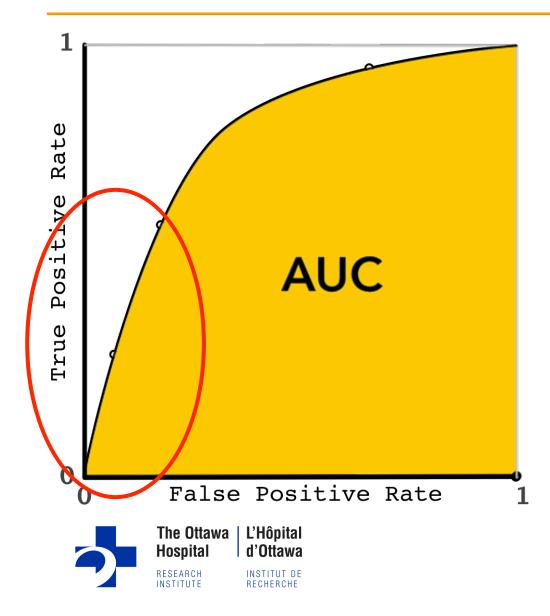

independent variables ^S, random variables ^S

explanatory variables ^S

target ML, outcome HC, dependent variable S, output ML

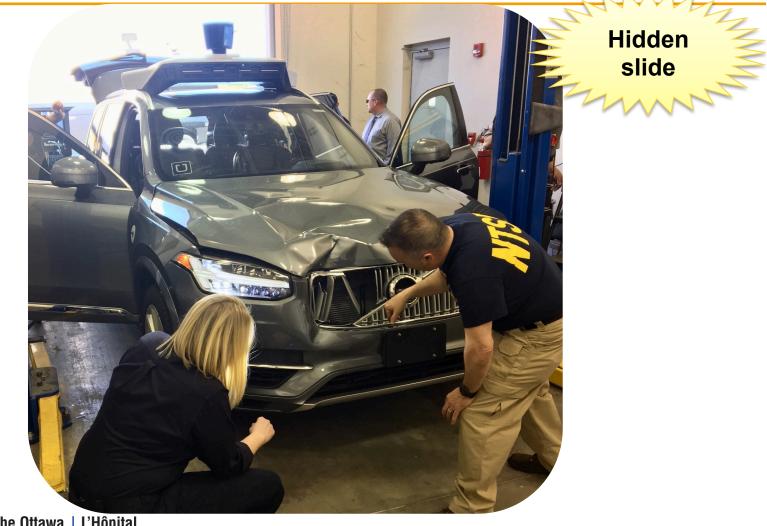
response variable ^S


	wgt	height	pulse	age	sex	acr	gfr		
<u>instances</u> ^{ML} , ∫	170	68	80	65	0	30	60		
samples ^s ,	150	65	60	46	1	5	30		
observations ^{HC,S} ,	155	66	65	22	0	2	95		
cases ^{HC}	160	68	60	37	1	2	100		
data matrix ML, feature matrix ML									


sample ^s

Collaborating challenge: different perspectives and methods

Area Under the Curve - relevant regions


Using the area under the ROC curve (AUC)²⁹.

But only some regions are relevant!^{4,5,6}

For low prevalence, the region of interest is at left^{7,8}.

A pedestrian was killed by an uber robocar

Affiliated with • Affilié à 🗰 uOttawa

Medical device security

Hidden slide

- Organizations that share experience and information on security, called ISAOs/ISACs are new in medical devices, as of 2017.
- In defense, finance and energy they have existed for decades.
- We need a margin of safety!

- 1. Paths
- 2. Pitfalls and challenges
- 3. Tools and resources

You are not alone!

- Al and ML are an explosion of concepts
- Wider than statistics and deep
- Weka has 180+ methods

You are not alone!

- Al and ML are an explosion of concepts
- Wider than statistics and deep
- Weka has 180+ methods

plan, study, try, then learn as you go.

Foundational skills

to understand and do AI/ML well, are:

- algebra (advanced)
- statistics (advanced)
- ML methods (advanced) and pipelines
- programming, databases, data wrangling
- subject matter concepts, processes, data
- explainable and equitable AI
- some probability, info theory, calculus, optimization

Additional/optional skills

to do/use some AI/ML methods, are:

- some optimization (advanced)
- some functional analysis and topology
- some thermodynamics and neuroscience
- some causality, theories of science and evidence
- some learning theory

I can help with

- Questions, papers, books, authors, conferences, forums and mailing lists, contests, benchmark data
- I cannot help with:
 - online AI courses
 - courses at uOttawa
 - introductory AI books

My experience: in-person uWaterloo none avail my time

Example graduate courses (at UW)

Hidden slide

- Introduction to Mathematical Oncology
- Statistical Learning Classification
- Logistic Regression and Its Application
- Correlation and Regression
- Computational Linguistics
- Advanced Pattern Recognition
- Statistical Image Processing and Multidimensional Modeling
- Applied Machine Learning

- Numerical Algorithms and Image Processing
- Medical Image Processing
- Computational Techniques in Biological Sequence Analysis
- Health Informatics II Application Domains
- Health Informatics I Data Structures and Standards
- Human Aspects of Software
 Engineering

Example undergrad courses (at UV

- Undergraduate research assistant: Models of relative visual sensitivity in optometry (multivariate non-linear regression)
- Systems Design Workshop II: Autonomous guided vehicle with ultrasound and fuzzy logic control
- Systems Design Workshop I: Music parsing (pattern recognition)
- Analysis of Large Systems
- Linear Systems
- Numerical Analysis
- Engineering Optimization
- Software Engineering

- Systems Models
- Linear Systems and Signals

Hidden

slide

- Statistics
- Differential Equations
- Probability
- Calculus II
- Calculus I
- Linear Algebra
- and more

Papers on AI in general

- Rajkumar et al Al in Medicine 2019
- Upshur AI ML...impacts on...Family Medicine 2019 perspective
- Leo Brieman Statistical Modeling: The Two Cultures 2001 seminal
- Mukherjee AI vs. MD (New Yorker Magazine) 2018 layperson
- Topol High performance medicine... 2019
 current
- Cruz and Wishart Survey of ML in Cancer Prediction... 2006 good
- Wu et al Top 10 Algorithms in ML 2008
- Kotsiantis Survey of Supervised ML 2007
 useful
- Bhaskar et al Survey of ML for Bioinformatics

Details

included

analysis

historical

DNA

Papers on Al in surgery

- Details included
- Hashimoto et al Al in surgery promise and perils 2018
- Kassahun et al Surgical robotics... 2019
- Bernardo VR and simulation in neurosurgical...2017
- Winkler-Schwartz et al Al...to assess surgical expertise in VR 2019
- Steiner et al Deep learning lymph node histopathology 2018
- Esteva et al Deep learning in healthcare...[incl. surg. robotics] 2019

Papers compare methods (empirical

- Olson et al Large benchmark suite for ML evaluation... 2017
- Zhang et al ... comparison of state-of-the-art classification... 2017
- Delgado et al Do we need hundreds of classifiers... 2014
- Caruana et al ...comparison...supervised learning... 2006
- Caruana et al ...evaluation...supervised...in high dimensions... 2006
- Caruana et al ...comparison...supervised...different...metrics 2003
- Lim et al ...thirty-three old and new classification... 2000

Hidden slide

Books in AI/ML

- Topol Deep medicine 2019 (just starting no opinion yet)
- Bishop Pattern recognition and ML 2011
- Frank & Witten Data mining: practical ML tools and techniques 4th ed.
 2016, 3rd ed. 2011
- Shawe-Taylor & Cristianini Kernel Methods for Pattern Analysis 2004
- Nixon & Aguado Feature extraction and image processing 3rd ed. 2012
- Duda & Hart Pattern Classification 2nd ed. 2000, 1st ed. 1973
- Russell & Norvig Artificial intelligence 4th ed. 2020, 3rd ed. 2009

Hidden

Books in biostatistics

- Steyerberg Clinical prediction models
- Harrell Regression modeling strategies 2nd ed., 1st ed.
- Urdan Statistics in plain english 4th ed. 2016, 3rd ed. 2010
- Watkins Introduction to the science of statistics 2016
- Zhou et al Statistical methods in diagnostic medicine
- Hastie et al Elements of statistical learning

Key authors of AI papers

<u>AI</u>

- Vladmir Vapnik
- Bernard Schölkopf
- Leo Brieman
- Isabelle Guyon
- Alexander Smola
- Robert Müller
- Corinna Cortes

Deep learning

- Geoffrey Hinton
- Yoshio Bengio
- Yan LeCun
- Andrew Wilson
- Ruslan Salakhutdinov

Key authors of statistical learning p

Hidden slide

Statistics

- David Cox
- Donald Ruben
- Emanuel Parzen
- Frank Harrell Jr.
- Douglas Altman
- Leo Brieman

Biostatistics

- Frank Harrell Jr.
- Ewout Steyerberg
- Andrew Vickers
- Lisa Ohno-Machado
- Timothy Hastie
- Robert Tibshirani
- Douglas Manuel
- Peter Austin

Conferences

- Neural information processing society (NeurIPS/NIPS), ESANN
- International conference on ML (ICML), ECML, ACML
- Machine learning for health care
- Medical imaging consortium conference on AI (MICCAI)
- Knowledge discovery and data mining (KDD)
- Association of AI (AAAI)
- Uncertainty in AI (UAI)
- International joint conference on AI (IJCAI), ICMLA, IJCNN
- SIAM data mining (SDM)

Questions?

André Carrington PhD PEng

Affiliated with • Affilié à 🗰 uOttawa